A-A+

计算下列二重积分xcos(x+y)dσ 其中D是顶点分别为(0 0) (π 0)和(π π)

2022-08-12 13:16:01 问答库 阅读 196 次

问题详情

计算下列二重积分xcos(x+y)dσ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.

参考答案

?xcos(x+y)dxdy=[0,π]∫xdx∫[0,x]cos(x+y)d(x+y)=[0,π]∫xdx[sin(x+y)]︱[0,x]
=[0,π]∫x(sin2x-sinx)dx=[0,π][∫xsin2xdx-∫xsinxdx]=[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}
=[0,π]{-(1/2)[xcos2x-(1/2)sin2x]+[xcosx-sinx]}
=[0,π]{-(1/2)xcos2x+(1/4)sin2x+xcosx-sinx}
=-(1/2)π-π=-(3/2)π

考点:顶点,积分