期望与方差公式
摘要:方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。若x1,x2,x3 xn的平均数为m则方差s^2=1 n[(x1-m)^2+(x2-m)^2+...
方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。
若x1,x2,x3......xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。
扩展
方差和期望的关系公式
DX=E(X^2-2XEX+(EX)^2)
在概率论和统计学中,数学期望mean或均值,亦简称期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。概率,它是反映随机事件出现的可能性likelihood大小,随机事件是指在相同条件下。可能出现也可能不出现的事件,从一批有正品和次品的商品中。
例子
某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个。求一个家庭平均小孩的数目:
思路:则此城市中任一个家庭中孩子的数目是一个随机变量。它可取值0,1,2,3。其中取0的概率为0.01(1000/10万),取1的概率0.9(9000/10万),取2的概率为0.06(6000/10万),取3的概率为0.03(3000/10万)。它的数学期望0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个。用数学式子表示为E(X)=1.11。
方差的概念与计算公式,例如 两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。
方差的概念
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
好的,那么这就是给大家分享的期望与方差公式,希望大家看完这篇由小编精心整理的内容后,能对相关知识有所了解,解决你的疑惑!
语音读文: