A-A+

按定义10.2改写下列差分方程 并指出方程的阶数: (1)△2yn-3△yn=5; (2)△

2022-08-12 02:00:23 问答库 阅读 193 次

问题详情

按定义10.2改写下列差分方程,并指出方程的阶数: (1)△2yn-3△yn=5; (2)△3yn-1-n△yn=2n; (3)△3yn-3△yn-2yn=3; (4)△2yn+2△yn+3yn=n2; (5)△3yn-2△2yn-3yn=-2(n+1).


请帮忙给出正确答案和分析,谢谢!

参考答案

正确答案:(1)△2yn=yn+2-2yn+1+yn△yn=yn+1-yn2yn-3△yn=yn+2-2yn+1+yn-3yn+1+3yn=yn+2-5n+1+4yn所以改写后为yn+2-5yn+1+4yn=5因为n+2-n=2所以是二阶方程(2)因为△3yn=yn+3-3yn+2+3yn+1-yn△yn=yn+1-yn从而△3yn-1=yn+2-3yn+1+3yn-yn-1代人原式yn+2-3yn+1+3yn-yn-1-nyn+1+nyn=2n即yn+2-(3+n)yn+1+(3+n)yn-yn-1=2n为改写后的方程因为n+2-(n-1)=3所以是三阶方程(3)△3yn-yn+3-3yn+2+3yn+1-yn△yn=yn+1-yn代入原方程yn+3-3yn+2+3yn+1-yn-3yn+1+3yn-2yn=3所以yn+3-3yn+2=3为改写后的方程因为n+3-(n+2)=1所以是一阶方程(4)因为△2yn=yn+2-2 yn+1+yn△yn=yn+1-yn代入原方程yn+2-2yn+1+yn+2yn+1-2yn+3yn=n2所以yn+2+2yn=n2为改写后的方程因为n+2-n=2所以是二阶方程(5)因为△3yn=yn+3-3yn+2+3yn+1-yn2yn=yn+2-2yn+1+yn将△3yn2yn代入原方程yn+3-3yn+2+3yn+1-yn-2yn+2+4yn+1-2yn-3yn=-2(n+1)所以yn+3-5yn+2+7yn+1-6yn=-2(n+1)为改写后的方程因为n+3-n=3所以是三阶方程
(1)△2yn=yn+2-2yn+1+yn,△yn=yn+1-yn,△2yn-3△yn=yn+2-2yn+1+yn-3yn+1+3yn=yn+2-5n+1+4yn,所以改写后为yn+2-5yn+1+4yn=5因为n+2-n=2所以是二阶方程(2)因为△3yn=yn+3-3yn+2+3yn+1-yn,△yn=yn+1-yn,从而△3yn-1=yn+2-3yn+1+3yn-yn-1,代人原式yn+2-3yn+1+3yn-yn-1-nyn+1+nyn=2n,即yn+2-(3+n)yn+1+(3+n)yn-yn-1=2n为改写后的方程因为n+2-(n-1)=3,所以是三阶方程(3)△3yn-yn+3-3yn+2+3yn+1-yn,△yn=yn+1-yn代入原方程yn+3-3yn+2+3yn+1-yn-3yn+1+3yn-2yn=3,所以yn+3-3yn+2=3为改写后的方程因为n+3-(n+2)=1所以是一阶方程(4)因为△2yn=yn+2-2yn+1+yn,△yn=yn+1-yn代入原方程yn+2-2yn+1+yn+2yn+1-2yn+3yn=n2,所以yn+2+2yn=n2为改写后的方程因为n+2-n=2,所以是二阶方程(5)因为△3yn=yn+3-3yn+2+3yn+1-yn△2yn=yn+2-2yn+1+yn,将△3yn,△2yn代入原方程yn+3-3yn+2+3yn+1-yn-2yn+2+4yn+1-2yn-3yn=-2(n+1),所以yn+3-5yn+2+7yn+1-6yn=-2(n+1)为改写后的方程因为n+3-n=3,所以是三阶方程

考点:方程,定义