若z=z+iy 试证: (1)sin z=sin x.cosh y+icos x.sinh
问题详情
若z=z+iy,试证: (1)sin z=sin x.cosh y+icos x.sinh y; (2)cos z=cos x.cosh y—isin x.sinh y; (3)|sin z|2=sin2 x+sinh2 y; (4)|cos z|2=cos2 x+sinh2 y.
请帮忙给出正确答案和分析,谢谢!
参考答案
正确答案:(1)sin z=sin(x+iy)=sinxcos(iy)+cos xsin(iy)=sin xcosh y+icos xsinh y.(2)cos z=cos(x+iy)=cosxcos(iy)一sin xsin(iy)=cos xcosh y+isin xsinh y.(3)|sin z|2=|sin xcosh y+icos xsinh y|2=sin2 xcosh2 y+cos2 xsinh2y=sin2x(cosh2y—sinh2y)+(cos2z+sin2 x)sinh2y=sin2z+sinh2y.(4)|cos z|2=|cos xcosh y—isin xsinh y|2=cos2xcosh2y一sin2xsinh2y=cos2x(sinh2y+1)+sin2xsinh2y=cos2z+cos2xsinh2y+sin2xsinh2y=cos2x+(cos2x+sin2x)sinh2 y=cos2xsinh2y.
(1)sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy+icosxsinhy.(2)cosz=cos(x+iy)=cosxcos(iy)一sinxsin(iy)=cosxcoshy+isinxsinhy.(3)|sinz|2=|sinxcoshy+icosxsinhy|2=sin2xcosh2y+cos2xsinh2y=sin2x(cosh2y—sinh2y)+(cos2z+sin2x)sinh2y=sin2z+sinh2y.(4)|cosz|2=|cosxcoshy—isinxsinhy|2=cos2xcosh2y一sin2xsinh2y=cos2x(sinh2y+1)+sin2xsinh2y=cos2z+cos2xsinh2y+sin2xsinh2y=cos2x+(cos2x+sin2x)sinh2y=cos2xsinh2y.