平均值的标准偏差的计算公式
摘要:平均值的标准偏差公式:σχ=σ √n。平均值的标准偏差是指一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些...
平均值的标准偏差公式:σχ=σ/√n。平均值的标准偏差是指一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。例如:A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。
这两组的平均数都是70,但A组的标准差应该是17.078分,B组的标准差应该是2.160分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准偏差的计算步骤
标准偏差的计算步骤主要是每个样本的数据减去样本全部平均数据之后的一个平均值然后将各个数值的平方相加,最后将这个结果除以 (n - 1)(“n”指样本数目),最后将所得的数值只平方根就是抽样的标准偏差。
标准偏差反映数值相对于平均值(mean)的离散程度
忽略逻辑值(TRUE 和 FALSE)和文本。如果不能忽略逻辑值和文本,请使用 STDEVA 函数。 STDEV 假设其参数是总体中的样本。如果数据代表整个样本总体,则应使用函数 STDEVP 来计算标准偏差。
测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别,其公式如下所列。标准差的观念是由卡尔·皮尔逊(Karl Pearson)引入到统计中。
平均偏差
平均偏差:avg_d=(abs(d1)+abs(d2)+...+abs(dn))/n;相对平均偏差=平均偏差/平均值(注意最后求出的是百分数)。
平均偏差是指单次测定值与平均值的偏差(取绝对值)之和,除以测定次数。进行分析时,往往要平行分析多次,然后取几次结果的平均值作为该组分析结果的代表。但是测得的平均值和真实数值间存在着差异,所以分析结果的误差是不可避免的,为此要注意分析结果的准确度,寻求分析工作中产生误差的原因和误差出现规律,要对分析结果的可靠性和可信赖程度作出合理判断。
分析结果的准确度、精密度是药物分析中常遇到的问题,分析中常采用平均偏差、标准偏差及其相对平均偏差、相对标准偏差(RSD)以考察分析结果精密度。常用于分析化学的定量实验。
语音读文: