三角函数的导数公式
摘要:三角函数求导公式(sinx)& 39;=cosx(cosx)& 39;=-sinx(tanx)& 39;=sec²x=1+tan²x(cotx)& 39;=-csc²x(secx)& 39; =tanx·secx(cscx)& 39; =-cotx·csc...
三角函数求导公式
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=sec²x=1+tan²x
(cotx)'=-csc²x
(secx)' =tanx·secx
(cscx)' =-cotx·cscx.
(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x
两角公式
(1)两角和差公式
sin(x+y)=sinxcosy+sinycosx
sin(x-y)=sinxcosy-sinycosx
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
tan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtany
tan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany
(2)二倍角公式
sin2x=2sinxcosx
推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosx
cos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)
推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²x
tan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x
三倍角公式
sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³x
cos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosx
tan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)
语音读文: