A-A+

椭圆焦点三角形面积公式

更新:2025-07-17 教育问答 阅读

摘要:椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。 焦点三角形面积公式是S=b²·tan (θ 2)(θ为焦点三角形的顶角)...

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。 焦点三角形面积公式是S=b²·tan (θ/2)(θ为焦点三角形的顶角)。

椭圆的焦点三角形性质为

(1)|PF1|+|PF2|=2a

(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ

(3)周长=2a+2c

(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)

证明

设P为椭圆上的任意一点P(不与焦点共线),

∠F2F1P=α ,∠F1F2P=β, ∠F1PF2=θ,

则有离心率e=sin(α+β) / (sinα+sinβ),

焦点三角形面积S=b²·tan(θ/2)。

扩展

圆的通径就是过焦点垂直于长轴的直线与椭圆相交所得的线段长度,所以把椭圆方程中的x代成c,就可得:就可得y1=b²/a,y2=-b^/a,所以通径的长度就是y1-y2=2b²/a,其中b²表示b的平方。

推导过程

证明

设椭圆x²/a²+y²/b²=1,焦点(c,0),(-c,0),且c²=a²-b²

令x=c或-c,c²/a²+y²/b²=1

∴y²/b²=1-c²/a²=1-(a²-b²)/a²=b²/a²

∴y²=b²×b²/a²,y=b²/a或-b²/a

即通径两端点为(c,b²/a)(c,-b²/a),或者(-c,b²/a)(-c,-b²/a)

∴通径长=b²/a-(-b²/a)=2b²/a

椭圆通径长定理

椭圆的常见问题以及解法

椭圆通径长定理,指的是椭圆的通径AB就是过焦点垂直于长轴的直线与椭圆相交所得的线段AB。可以由勾股定理推导。椭圆中的通径是通过焦点最短的弦。

例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用第一定义):

将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,

那么会得到两个公共点,显然他们是截面与球的切点。

设两点为F1、F2

对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

由定义1知:截面是一个椭圆,且以F1、F2为焦点

用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆。

好的,那么这就是给大家分享的椭圆焦点三角形面积公式,希望大家看完这篇由小编精心整理的内容后,能对相关知识有所了解,解决你的疑惑!

语音读文:

本文地址:http://www.583316.com/jiaoyu/l9xr0y9.html

Copyright © 2018-2024 问答库 保留所有权利.   SiteMap  .