圆的一般方程公式
摘要:圆的一般方程公式x²+y²+Dx+Ey+F=0(D²+E²-4F>0)圆的标准方程(x-a)²+(y-b)²=r²中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时...
圆的一般方程公式
x²+y²+Dx+Ey+F=0(D²+E²-4F>0)
圆的标准方程(x-a)²+(y-b)²=r²中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
圆的一般式的圆心和半径
圆的一般方程是x²+y²+Dx+Ey+F=0(D²+E²-4F>0),其中圆心坐标是(-D/2,-E/2),半径【根号(D²+E²-4F)】/2。
圆(一种几何图形)在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x-a)²+(y-b)²=r²。其中,o是圆心,r是半径。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
参数方程有哪些
曲线的极坐标参数方程:ρ=f(t),θ=g(t)。
圆的参数方程:x=a+rcosθ,y=b+rsinθ(θ∈[0,2π))。(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标
椭圆的参数方程:x=acosθ,y=bsinθ(θ∈[0,2π))。a为长半轴长,b为短半轴长,θ为参数
双曲线的参数方程:x=asecθ(正割),y=btanθ,a为实半轴长,b为虚半轴长,θ为参数
抛物线的参数方程:x=2pt²,y=2pt,p表示焦点到准线的距离,t为参数
直线的参数方程:x=x'+tcosa,y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。或者x=x'+ut,y=y'+vt(t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
圆的渐开线x=r(cosφ+φsinφ),y=r(sinφ-φcosφ)(φ∈[0,2π))。r为基圆的半径,φ为参数
圆的公式
1.圆的周长C=2πr=πd
2.圆的面积S=πr²
3.扇形弧长l=nπr/180
4.扇形面积S=nπr²/360=rl/2
5.圆锥侧面积S=πrl
语音读文: