A-A+

因式分解公式有哪些

更新:2025-05-11 教育问答 阅读

摘要:因式分解公式平方差公式:(a+b)(a-b)=a²-b²完全平方公式:(a±b)²=a²±2ab+b²把式子倒过来(a+b)(a-b)=a²-b²a²±2ab+b²= (a±b)²就变成了因式...

因式分解公式

平方差公式:(a+b)(a-b)=a²-b²

完全平方公式:(a±b)²=a²±2ab+b²

把式子倒过来

(a+b)(a-b)=a²-b²

a²±2ab+b²= (a±b)²

就变成了因式分解,因此,我们把用利用平方差公式和完全平方公式进行因式分解的方法称之为公式法。

1、25-16x²=5²-(4x)²=(5+4x)(5-4x)

2、p4-1

=(p²+1)(p²-1)

=(p²+1)(p+1)(p-1)

3、x²+14x+49

=x²+2·7·x+7²

=(x+7)²

4、(m-2n)²-2(2n-m)(m+n)+(m+n)²

=(m-2n)²+2(m-2n)²(m+n)+(m+n)²

=[(m-2n)+(m+n)]²

=(2m-n)²

注意点

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

补充

立方和公式:a³+b³=(a+b)(a²-ab+b²)。

立方差公式:a³-b³=(a-b)(a²+ab+b²)。

完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

好的,那么这就是给大家分享的因式分解公式有哪些,希望大家看完这篇由小编精心整理的内容后,能对相关知识有所了解,解决你的疑惑!

语音读文:

本文地址:http://www.583316.com/jiaoyu/9zpk5jw.html

Copyright © 2018-2024 问答库 保留所有权利.   SiteMap  .