A-A+

三角函数的多次求导公式

更新:2025-05-19 文化问答 阅读

摘要:三角函数求导公式:(sinx)& 39;=cosx、(cosx)& 39;=-sinx、(tanx)& 39;=sec²x=1+tan²x。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及...

三角函数求导公式:(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x=1+tan²x。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。导数也叫导函数值,导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

三角函数求导公式有:

1、(sinx)' = cosx

2、(cosx)' = - sinx

3、(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2

4、-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2

5、(secx)'=tanx·secx

6、(cscx)'=-cotx·cscx

7、(arcsinx)'=1/(1-x^2)^1/2

8、(arccosx)'=-1/(1-x^2)^1/2

9、(arctanx)'=1/(1+x^2)

10、(arccotx)'=-1/(1+x^2)

11、(arcsecx)'=1/(|x|(x^2-1)^1/2)

12、(arccscx)'=-1/(|x|(x^2-1)^1/2)

13、(sinhx)'=coshx

14、(coshx)'=sinhx

15、(tanhx)'=1/(coshx)^2=(sechx)^2

16、(coth)'=-1/(sinhx)^2=-(cschx)^2

17、(sechx)'=-tanhx·sechx

18、(cschx)'=-cothx·cschx

19、(arsinhx)'=1/(x^2+1)^1/2

20、(arcoshx)'=1/(x^2-1)^1/2

21、(artanhx)'=1/(x^2-1) (|x|<1)

22、(arcothx)'=1/(x^2-1) (|x|>1)

23、(arsechx)'=1/(x(1-x^2)^1/2)

24、(arcschx)'=1/(x(1+x^2)^1/2)。

语音读文:

本文地址:http://www.583316.com/jiaoyu/940d2jj.html

Copyright © 2018-2024 问答库 保留所有权利.   SiteMap  .