行程问题公式
摘要:行程问题公式火车过桥(桥长+车长)÷速度=时间(桥长+车长)÷时间=速度速度*时间=桥长+车长追及问题路程差÷速度差=时间路程差÷时间=速度差速度差*时...
行程问题公式
火车过桥
(桥长+车长)÷速度=时间
(桥长+车长)÷时间=速度
速度*时间=桥长+车长
追及问题
路程差÷速度差=时间
路程差÷时间=速度差
速度差*时间=路程差
流水行船问题
例: 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。
环形上的相遇问题
例:甲、乙二人同时从起点出发,在环形跑道上跑步,甲的速度是每秒跑4米,乙的速度是每秒跑4.8米,甲跑___圈后,乙可超过甲一圈。
分析:甲乙速度不变,由于时间一定,速度与路程成正比例。甲、乙速度比为5:6,甲、乙所行路程比也为5:6。甲乙路程相差一份,这一份代表一圈。由此可得,甲走5份,就走了5圈。
电梯问题
例:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
分析:因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有 80-20=60(级)。
发车问题
例:小敏走在街上,注意到:每隔6分钟有一辆30路公交车从身后超过她,每隔2分钟,马路对面30路公交车迎面驶来,假设小敏步行速度一定,30路车总站发生间隔时间一定,问30路公交车每隔多久发一班车?
分析:解:设30路公交车速度为X,小敏行速为Y,30路公交车每隔Z分钟发一班车,则追距=X*Z,由已知得下方程组:
X*Z/(X-Y)=6
X*Z/(X+Y)=2
解上方程组,得
Y=X/2
X*Z=6*(X-Y)=6*(X-X/2)=3X
Z=3
答:30路车每隔3分钟发一班车。
语音读文: