△的公式与求根公式
摘要:Δ的公式为:Δ=b²-4ac。一元二次方程的判别式我们通常du用希腊字母Δ(读作“德塔”)来表示。一元二次方程ax²+bx+c=0(a≠0)的根有三种情况:有两个相...
Δ的公式为:Δ=b²-4ac。
一元二次方程的判别式我们通常du用希腊字母Δ(读作“德塔”)来表示。
一元二次方程ax²+bx+c=0(a≠0)的根有三种情况:有两个相等的实数根、有两个不相等的实数根、没有实数根。因为一元二次方程的根与系数之间存在特殊的关系,我们不需要解方程,也能对根的情况做出判别。
一元二次方程的一般形式为ax²+bx+c=0(a≠0)
那么Δ=b²-4ac。
若Δ>0,则此一元二次方程有两个不相等的实数根;
若Δ=0,则此一元二次方程有两个相等的实数根;
若Δ<0,则此一元二次方程没有实数根。
在一元二次方程 (a≠0,a、b、c∈R)中,
1、当方程有两个不相等的实数根时,△>0;
2、当方程有两个相等的实数根时,△=0;
当方程没有实数根时,△<0。
(1)和(2)合起来:当方程有实数根时,△≥0.
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
三角函数本质:根据三角函数定义推导公式根据下图,有sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,六个三角函数也可以依据半径为一中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于 cosθ和 sinθ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sinθ=y/1 和 cosθ=x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
语音读文: