等比公式求和的公式
摘要:等比数列求和公式q≠1时 Sn=a1(1-q^n) (1-q)=(a1-anq) (1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为等比)这个常数叫做等比数列的公比,公比通常...
等比数列求和公式
q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1时Sn=na1
(a1为首项,an为第n项,d为公差,q 为等比)
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1 时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。
等比数列求和公式推导
Sn=a1+a2+a3+...+an(公比为q)
qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)
Sn-qSn=(1-q)Sn=a1-a(n+1)
a(n+1)=a1qn
Sn=a1(1-qn)/(1-q)(q≠1)
扩展
等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
等比数列
An+1/An=q,n为自然数.
通项公式
An=A1*q^(n-1);
推广式
An=Am·q^(n-m);
求和公式
Sn=nA1(q=1)
Sn=[A1(1-q)^n]/(1-q)
性质
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方.
对于一个数列 {an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比 q ;从第一项a1 到第n项an 的总和,记为Tn 。
那么, 通项公式为 (即a1 乘以q 的 (n-1)次方,其推导为“连乘原理”的思想:a2=a1 * q,
a3= a2 * q,
a4= a3 * q,
an=an-1 * q,
将以上(n-1)项相乘,左右消去相应项后,左边余下an , 右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
此外, 当q=1时 该数列的前n项和:Sn=nA1(q=1)
当q≠1时 该数列前n项的和:Sn=[A1(1-q)^n]/(1-q)
语音读文: