A-A+
设其中f(x)有一阶连续导数 求F(t).
问题详情
设其中f(x)有一阶连续导数,求F'(t).
参考答案
F(t)=∫0tdx∫0tdy∫0tf(xyz)dz=∫0tψ(x,t)dx
其中 ψ(x,t)=∫0tdy∫0tf(xyz)dz
所以 F'(t)=ψ(t,t)+∫0tψ',(x,t)dx
其中 ψ(t,t)=∫0tdy∫0tf(tyz)dz
而记 φ(t,x,y)=∫0tf(xyz)dz
则 ψ(x,t)=∫0tφ(t,x,y)dy
所以 ψ't=φ(t,x,t)+∫abφ't(t,x,y)dy
φ(t,x,t)=∫0tφt(t,x,y)dy
φ't=f(xyt)
所以 F'(t))=∫0tdy∫0tf(tyz)dz+∫0tdx∫0ttf(xzt)dz+∫0tdx(xyt)dy
若f'(u)连续,我们考虑:
∫0tdx∫0tdy∫0txyzf'(xyz)dz
=t∫0tdx∫0tf(xyt)dy-∫0tdx∫0tdy∫0tf(xyz)dz
所以 ∫0tdx∫0tf(xyt)dy
而 ∫0tdx∫0tf(xyt)dy=∫0tdx∫0tf(xtz)dz=∫0tdy∫0tf(tyz)dz
所以,