A-A+
设f(x)在[a b]上连续 且f(x)>0F(x)=∫(上限为x 下限为a)f(t)dt+
问题详情
设f(x)在[a,b]上连续,且f(x)>0
F(x)=∫(上限为x,下限为a)f(t)dt+∫(上限为x,下限为b)1/f(t)dt,x∈[a,b].证明:方程F(x)=0在区间[a,b]有且仅有一个根.
参考答案
对F(X)求导得f(x)+1/f(x),因f(x)在[a,b]上连续,且f(x)>0即F(X)在[a,b]上单调递增,又F(a)<0,F(b)>0,由介值定理得F(x)=0
在[a,b]上有且仅有一个根.