A-A+
设y1(x) y2(x) y3(x)均为非齐次线性方程 y+P1(x)y+P2(x)y=
问题详情
设y1(x),y2(x),y3(x)均为非齐次线性方程
y"+P1(x)y'+P2(x)y=Q(x)的特解,其中P1(x),P2(x),Q(x)为已知函数,且
试证:y(x)=(1-C1-C2)y1(x)+C1y2(x)+C2y3(x)为给定方程的通解(C1,C2为任意常数)
参考答案
只需验证y(x)满足方程
证y=(1-C1-C2)y1+C1y2+C2y3,
y'=(1-C1-C2)y'1+C1y2+C2y'3,
y"=(1-C1-C2)y"1+C1y"2+C2y"3代入已知方程左端,可得
y"+P1(x)y'+P2(x)y=(1-C1-C2)y"1+C1y"2+C2y'3+P1(x)[(1-C1-C2)y'1+C1y'2+C2y'3+P2(x)[(1-C1-C2)y1+C1y2+C2y3]=(1-C1-C2)Q(x)+C1Q(x)+C2Q(x)=Q(x)
表明y(x)=(1-C1-C2)y1(x)+C1y2(x)+C2y3(x)为所给方程的解
再验证y(x)为原方程通解
y(x)=(1-C1-C2)y1(x)+C1y2(x)+C2y3(x)=y1(x)+C1[y2(x)-y1(x)]+C2[y3(x)-y1(x)]因为y1(x),y2(x),y3(x)都为原方程的特解,可知y2(x)-y[sub>1</sub>](x),y3(x)-y1(x)也为原方程的特解
由于