A-A+
设函数f(x)在[0 1]上有二阶连续导数 且f(0)=f(1)=0 f(x)≠0 x∈(0
问题详情
设函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0,f(x)≠0,x∈(0,1),证明∫(1,0)f(x)dx=1/2∫(1,0)x(x-1)f"(x)dx
参考答案
(1/2)∫[0→1] x(x - 1)?''(x) dx
= (1/2)∫[0→1] (x2 - x) d[?'(x)]
= (1/2)(x2 - x)?'(x) |[0→1] - (1/2)∫[0→1] ?'(x) d(x2 - x)
= (- 1/2)∫[0→1] ?'(x)(2x - 1) dx
= (- 1/2)∫[0→1] (2x - 1) d[?(x)]
= (- 1/2)(2x - 1)?(x) |[0→1] + (1/2)∫[0→1] ?(x) d(2x - 1)
= (- 1/2){[2(1) - 1]?(1) - [2(0) - 1]?(0)} + (1/2)∫[0→1] ?(x)(2) dx
= (- 1/2){?(1) + ?(0)} + ∫[0→1] ?(x) dx
= (- 1/2){0 + 0} + ∫[0→1] ?(x) dx
= ∫[0→1] ?(x) dx
上面共用了两个分部积分法
∫ udv = uv - ∫ vdu