A-A+

关于双生子佯谬 一对双胞胎 20岁时哥哥乘飞船以υ=0.8c的匀速度离地球而去 弟弟留在地

2022-08-12 09:40:09 问答库 阅读 195 次

问题详情

关于双生子佯谬
一对双胞胎,20岁时哥哥乘飞船以υ=0.8c的匀速度离地球而去,弟弟留在地球上。10年后,弟弟30岁时,飞船到达星球P,弟弟据运动时钟计时率变慢公式认定哥哥经过的时间间隔为5,即哥哥时年26岁。哥哥当然要认可自己与星球P相遇时确为26岁,于是他又据运动时钟计时率变慢公式,认定弟弟在此期间内经过的时间间隔应为5年,即弟弟此时的年龄当为23.6岁。弟弟认为哥哥年轻,哥哥认为弟弟年轻,虽然矛盾,但无法面对面核实。为作当面核实,常议论的一个方案是让哥哥以υ=0.8c匀速度反向飞回,与弟弟见面。重复相关计算,弟弟认为见面时自己是处。S'系为飞船参考系,哥哥与飞船位于x'=0处,S'系相对S系沿x轴以υ=0.8c匀速运动。S''系为哥哥的替身者参考系,替身位于待定的x''位置,S''系相对S系沿x轴负方向以υ=0.8c匀速运动。设哥哥飞离地球时,S''系的坐标原点O''恰好与O,O'重合,令此时有t=t'=t''=0。再设S''系中的替身两手各持一个构造相同的时钟,确保两者计时率相同,右手时钟已经启动,并已在S''系中校准过零点,左手时钟尚未启动。
(1)设哥哥飞船到达星球P处时,替身恰好也到达P处,此时替身启动左手时钟,并将读数拨成与哥哥时钟读数相同,试求此时星球P处时钟读数t1,替身所在位置的坐标x''和右手、左手时钟读数t''右1,t''左1
(2)而后替身与弟弟相遇时,再求弟弟时钟读数t2和替身左、右手时钟读数t''右2,t''左2;并检查是否有下述关系:t''右2=t''左2

参考答案

(1)S系认为飞船需经时
x/υ=10a
到达星球P,故P处时钟读数即为
t1=10a
此时S''系中的替身与星球P相遇,这一事件的两组空时坐标为
{x,t1}, {x'',t''右1}。
由洛伦兹变换可得
x=t1*t2另据运动时钟计时率变慢公式,此时哥哥的时钟读数应为
故替身左手时钟读数,也为
t''左1=t'=6a
(2)S系认为替身需再经时
x/υ=10a
到达地球,此时弟弟时钟读数应为
t2-t1+10a=20a
替身与弟弟相遇事件的两组空时坐标为
{x=0,t2}, {x'',t''右2},
可得替身右手时钟读数为
30s
在S''系中替身从星球P到达地球,经时
Δt''=t''右2-t''右1=6a,
故替身左手时钟读数为
t''左2=t''左1+Δt''=12a
可见,确有
t1=10a(12a=0.6×20a)
a=1s②
第①式表明,若将哥哥的前半段经历(从地球到星球尸)和替身的后半段经历(从星球P到地球)组合成半真半假的“哥哥”经历,那么“兄”弟见面时,确实是“哥哥”比弟弟年轻。但这样的“哥哥”不是双生子佯谬中真实的哥哥,故上述解答不能替代双生子佯谬的真实解答。
第②式表明,S''系中O''处和x''处的两个静止时钟测得的从哥哥离开弟弟,到替身见到弟弟的过程经历的时间间隔t''右2,与弟弟手中相对S''系运动的一个时钟测得的时间间隔t2之间的关系,仍然与运动时钟计时率变慢公式相符。

考点:飞船,双胞胎