A-A+

设A B c均为n阶矩阵.若AB=C 且B可逆 则A.矩阵C的行向量组与矩阵A的行向量组等价

2022-08-12 02:09:57 问答库 阅读 193 次

问题详情

设A,B,c均为n阶矩阵.若AB=C,且B可逆,则
A.矩阵C的行向量组与矩阵A的行向量组等价.
B.矩阵C的列向量组与矩阵A的列向量组等价.
C.矩阵C的行向量组与矩阵B的行向量组等价.
D.矩阵C的列向量组与矩阵B的列向量组等价.

请帮忙给出正确答案和分析,谢谢!

参考答案

正确答案:B
[详解]设A=(α1,α2,…,αn),C=(λ1,λ2,…,λs),由AB=C,则有(α1,α2,…,αs)=(λ1,λ2,…,λs),可知λj=b1jα1+b2jα2…+bnjαn,(j=1,2,…,n)即矩阵C的列向量组可由矩阵A的列向量组线性表示,又因B为可逆矩阵,于是矩阵A的列向量组也可由矩阵C的列向量组线性:表示,即矩阵c的列向量组与矩阵A的列向量组等价.故选(B).

考点:矩阵,向量