A-A+
计算下列各题的差分: (1)yn=n2-2n 求△2yn; (2)yn=3n 求△2yn;
问题详情
计算下列各题的差分: (1)yn=n2-2n,求△2yn; (2)yn=3n,求△2yn; (3)yn=(n+3)3+3,求△3yn; (4)yn=ln(n+1),求△2yn.
请帮忙给出正确答案和分析,谢谢!
参考答案
正确答案:×
(1)△yn=f(n+1)-f(n)=(n+1)2-2(n+1)-n2+2n=n2+2n+1-2n-2-n2+2n=2n-1所以△2y=△yn+1-△yn=2(n+1)-1-2n+1=2n+2-1-2n+1=2(2)△yn=f(n+1)-f(n)=3n+1-3n=3n(3-1)=2×3n△2yn=△yn+1-△yn=2×3n+1-2×3n=4×3n(3)△yn=f(n+1)-f(n)=(n+4)3+3-(n+3)3-3=(n+4)3-(n+3)3所以△3yn=△2yn+1-△2yn=△yn+2-2△yn+1+△yn=(n+6)3-(n+5)3-2(n+5)3+2(n+4)3+(n+4)3-(n+3)3=(n+6)3-3(n+5)3+3(n+4)3-(n+3)3=n3+18n2+108n+216-3n3-45n2-225n-375+3n3+36n2+144n+192-n3-9n2-27n-27=6(4)△yn=f(n+1)-f(n)=ln(n+2)-1n(n+1)△2yn=△yn+1-△yn=ln(n+3)-ln(n+2)-ln(n+2)+ln(n+1)=ln(n+3)-2ln(n+2)+ln(n+1)=