A-A+

试题(53) (54)线性规划问题就是求出一组变量 在一组线性约束条件下 使某个线性目标函数达到极大(

2020-10-12 15:11:50 IT认证 阅读

问题详情

试题(53)、(54)

线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,在求解线性规划问题时,如果容易求出可行解区的所有顶点,那么只要在这些顶点处比较目标函数的值就可以了。

例如,线性规划问题:max S=x+y(求S=x+y的最大值);2x+y≤7,x+2y≤8,x≥0,y≥0的可行解区是由四条直线2x+y=7,x+2y;8,x=0,y=0围成的,共有四个顶点。除了原点外,其他三个顶点是(53)。因此,该线性规划问题的解为 (54) 。

(53)A. (2,,(0,7),(3.5,0)

B. (2,3),(0,4),(8,0)

C. (2,3),(0,7),(8,O)

D. (2,3),(0,4),(3.5,0)

(54)A. x=2, y=3

B.x=0, y=7

C.x=0, y=4

D.x=8, y=0

参考答案

考点: