A-A+

探究并计算(大胆实践 你一定能探索成功!)观察后面等式:11×2=1-12 12×3=12-

2022-08-14 00:46:17 问答库 阅读 200 次

问题详情

探究并计算(大胆实践,你一定能探索成功!)
观察后面等式:1

1×2

=1-1

2

1

2×3

=1

2

-1

3

1

3×4

=1

3

-1

4

,将前面三个等式两边分别相加得:1

1×2

+1

2×3

+1

4=1-1

2

+1

2

-1

3

+1

3

-1

4

=1-1

4

=3

4


(1)猜想并写出:1

n(n+1)

=______.
(2)直接写出下面式子的计算结果:1

1×2

+1

2×3

+1

3×4

+…+1

2006×2007

=______.
(3)探究并计算:1

2×4

+1

4×6

+1

6×8

+…1

2006×2008

参考答案

(1)1n(n+1)=1n-1n+1

(2)11×2+12×3+13×4+…+12006×2007
=1-12+12-13+…+12006-12007
=1-12007
=20062007

(3)12×4+14×6+16×8+…12006×2008
=(12-14)×12+(14-16)×12+(16-18)×12+…+(12006-12008)×12
=(12-14+14-16+16-18+…+12006-12008)×12
=(12-12008)×12
=10032008×12
=10034016

故答案为:1n-1n+12006200710034016

考点:等式,后面