A-A+
请观察下列算式 找出规律并填空.11×2=1-12 12×3=12-13 13×4=13-1
问题详情
请观察下列算式,找出规律并填空. (1)110×11=110-111;1 1×2=1- 1 2, 1 2×3= 1 2- 1 3, 1 3×4= 1 3- 1 4, 1 4×5= 1 4- 1 5
(1)则第10个算式是______=______,
(2)第n个算式为:______=______.
(3)根据以上规律解答下题:
若有理数a,b满足a=1,b=3,试求1 ab+ 1 (a+2)(b+2)+ 1 (a+4)(b+4)+…+ 1 (a+100)(b+100)的值.
参考答案
(2)1n×(n+1)=1n-1n+1;
(3)1ab+1(a+2)(b+2)+1(a+4)(b+4)+…+1(a+100)(b+100),
=11×3+1(1+2)×(3+2)+1(1+4)×(3+4)+…+1(1+100)×(3+100),
=11×3+13×5+15×7+…+1101×103,
=12×[(1-13)+(13-15)+(15-17)+…+(1101-1103)],
=12×[1-1103],
=12×102103,
=51103;
故答案为:110×11,110-111,1n×(n+1),1n-1n+1.考点:算式,规律