A-A+

在某池塘内养鱼 该池塘最多能养鱼1000尾.在时刻t 鱼数y是时间t的函数y=y(t) 其变

2022-08-12 13:53:22 问答库 阅读 196 次

问题详情

在某池塘内养鱼,该池塘最多能养鱼1000尾.在时刻t,鱼数y是时间t的函数y=y(t),其变化率与鱼数y及1000-y成正比.已知在池塘内放养鱼100尾,3个月后池塘内有鱼250尾,求放养t月后池塘内鱼数y(t)的公式.

参考答案

dy/dt=ky(1000-y) k为一比例常数
由此解微分方程可得y与t的关系
将y=250 t=3代入后确定K
则得出结论

依题意得 dy/dt=ky (1000 - y ) ,y|t=0 =100 ,其中 k 为比例系数 分离变量 得 两边积分得 [dy/y( 1000 - y )]=kdt 两边积分,解得:y/(1000-y)=Ce^1000kt 代入初始条件y|t=0 =100 ,C=1/9 再由y|t=3 =250 得1000k=ln3/3 所以放养t个月后,池塘鱼数y(t)=[1000*3^(1/3)] / 9+3^(1/3)

考点:池塘,函数