A-A+
设A B∈Cn×n x∈Cn 证明: (1)∣Ax∣≤∣A∣∣x∣; (2)∣AB∣≤∣A∣
问题详情
设A,B∈Cn×n,x∈Cn,证明: (1)∣Ax∣≤∣A∣∣x∣; (2)∣AB∣≤∣A∣∣B∣; (3)若0≤A≤B,则0≤An≤Bm(m为正整数).
请帮忙给出正确答案和分析,谢谢!
参考答案
正确答案:(用归纳法)当m=1时结论成立.设结论对m=1成立即Am-1≤Bm-1那么Bm-1-Am-1≥0又B≥A≥0故Bm-Am-ABm-1+ABm-1-Am=B(Bm-1-Am-1)+(B-A)Am-1≥0从而Bm≥Am≥0.
(用归纳法)当m=1时,结论成立.设结论对m=1成立,即Am-1≤Bm-1,那么Bm-1-Am-1≥0,又B≥A≥0,故Bm-Am-ABm-1+ABm-1-Am=B(Bm-1-Am-1)+(B-A)Am-1≥0,从而Bm≥Am≥0.