A-A+
给定一个数组a(可能包含相同的数) 求它有多少个不同的子序列。例如a={1 2 1 3}子序
问题详情
给定一个数组a(可能包含相同的数),求它有多少个不同的子序列。例如a={1,2,1,3}子序列有{1}{2}{3}{1,2}{1,3}{1,2}{1,1}{1,3}{2,1}{2,3}{1,2,1}{1,2,3}{1,1,3}{2,1,3}等。请帮忙给出正确答案和分析,谢谢!
参考答案
正确答案:
这个题本身不难,但是分析清楚不容易。我们首先假设子序列可以为空——最后减1就好了。假设dp[i]表示数列前i项构成的不同子序列的个数。初值:dp[0]=1因为只有一个空子序列我们现在考虑dp[i]
(1)如果数列第i项在之前没有出现过,是一个新数显然dp[i]=dp[i-1]*2这是因为前(i-1)项的子序列本身,以及添加上第i项,都是一个子序列,这是比较容易的情况。如果全是这样,人生就完美了……因为我们会推出dp[i]=2^i,但还有讨厌的第二种情况。
(2)如果第i项在之前出现过,假设j是它最近一次出现的位置,我们有0<j<i(注意i,j都是项数,或者说下标从1开始的)那么我们直接乘以2,有些会重复。哪些重复了呢?原来的前(j-1)项的子序列末尾添加上第j项和添加上第i项是一样的,就这些是重复的。所以dp[j-1]是重复的。此时dp[i]=dp[i-1]*2-dp[j-1]最后千万别忘记答案是dp[n]-1因为我们考虑了空的子序列。还有一种分析可以不考虑空的子序列,也是类似的。